数学八年级上册教案(精选2篇)

现在很多八年级的学生在学习数学时,都存在似懂非懂的现象。这个时候,家长们要重视孩子的基础知识的理解和复习。下面是小编精心为大家整理的数学八年级上册教案(精选2篇),如果能帮助到您,小编的一切努力都是值得的。

数学八年级上册教案 篇1

设置依据教学目标

1、了解多面体、直棱柱的有关概念

2、会认直棱柱的侧棱、侧面、底面.

3、了解直棱柱的侧棱互相平行且相等,侧面是长方形(含正方形)等特征.

教学重点与难点

教学重点:直棱柱的有关概念

教学难点:本节的例题描述一个物体的形状,把它看成怎样的两个几何体的组合,都需要一定的空间想象能力和表达能力。

教学准备每个学生准备一个几何体,(分好学习小组)教师准备各种直棱柱和长方体、立方体模型

教 学 过 程

内容与环节预设、简明设计意图二度备课(即时反思与纠正)

一、创设情景,引入新课

师:在现实生活中,像笔筒、西瓜、草莓、礼品盒等都呈现出了立体图形的形状,在你身边,还有没有这样类似的`立体图形呢?

析:学生很容易回答出更多的答案。

师:(继续补充)有许多著名的建筑,像古埃及的金字塔、巴黎的艾菲尔铁塔、美国的迪思尼乐园、德国的古堡风光,中国北京的西客站,它们也是由不同的立体图形组成的;那么立体图形在生活中有着怎样的广泛的应用呢?瞧,食物中的冰激凌、樱桃、端午节的粽子等。

二、合作交流,探求新知

1.多面体、棱、顶点概念:

师:(出示长方体,立方体模型)这是我们熟悉的立体图形,它们是有几个平面围成的?都有什么相同特点?

析:一个同学回答,然后小结概念:由若干个平面围成的几何体,叫做多面体。多面体上相邻两个面之间的交线叫做多面体的棱,几个面的公共顶点叫做多面体的顶点

2.合作交流

师:以学习小组为单位,拿出事先准备好的几何体。

学生活动:(让学生从中闭眼摸出某些几何体,边摸边用语言描述其特征。)

师:同学们再讨论一下,能否把自己的语言转化为数学语言。

学生活动:分小组讨论。

说明<>:真正体现了“以生为本”。让学生在主动探究中发现知识,充分发挥了学生的主体作用和教师的主导作用,课堂气氛活跃,教师教的轻松,学生学的愉快。

师:请大家找出与长方体,立方体类似的物体或模型。

析:举出实例。(找出区别)

师:(总结)棱柱分为之直棱柱和斜棱柱。(根据其侧棱与底面是否垂直)根据底面多边形的边数而分为直三棱柱、直四棱柱……直棱柱有以下特征:

有上、下两个底面,底面是平面图形中的多边形,而且彼此全等;

侧面都是长方形含正方形。

长方体和正方体都是直四棱柱。

3.反馈巩固

完成“做一做”

析:由第(3)小题可以得到:

直棱柱的相邻两条侧棱互相平行且相等。

4.学以致用

出示例题。(先请学生单独考虑,再作讲解)

析:引导学生着重观察首饰盒的侧面是什么图形,上底面是什么图形,然后与直棱柱的特征作比较。(使学生养成发现问题,解决问题的创造性思维习惯)

最后完成例题中的“想一想”

5.巩固练习(学生练习)

完成“课内练习”

三、小结回顾,反思提高

师:我们这节课的重点是什么?哪些地方比较难学呢?

合作交流后得到:重点直棱柱的有关概念。

直棱柱有以下特征:

有上、下两个底面,底面是平面图形中的多边形,而且彼此全等;

侧面都是长方形含正方形。

例题中的把首饰盒看成是由两个直三棱柱、直四棱柱的组合,或着是两个直四棱柱的组合需要一定的空间想象能力和表达能力。这一点比较难。

板书设计

作业布置或设计作业本及课时特训

数学八年级上册教案 篇2

教学目标

(一)教学知识点

1.经历探索积的乘方的运算法则的过程,进一步体会幂的意义。

2.理解积的乘方运算法则,能解决一些实际问题。

(二)能力训练要求

1.在探究积的乘方的运算法则的过程中,发展推理能力和有条理的表达能力。

2.学习积的乘方的运算法则,提高解决问题的能力。

(三)情感与价值观要求

在发展推理能力和有条理的语言、符号表达能力的同时,进一步体会学习数学的兴趣,提高学习数学的信心,感受数学的简洁美。

教学重点

积的乘方运算法则及其应用。

教学难点

幂的运算法则的灵活运用。

教学方法

自学─引导相结合的方法。

同底数幂的乘法、幂的乘方、积的乘方成一个体系,研究方法类同,有前两节课做基础,本节课可放手让学生自学,教师引导学生总结,从而让学生真正理解幂的运算方法,能解决一些实际问题。

教具准备

投影片.

教学过程

Ⅰ.提出问题,创设情境

[师]还是就上节课开课提出的问题:若已知一个正方体的棱长为1.1×103cm,你能计算出它的体积是多少吗?

[生]它的'体积应是V=(1.1×103)3cm3。

[师]这个结果是幂的乘方形式吗?

[生]不是,底数是1.1和103的乘积,虽然103是幂,但总体来看,我认为应是积的乘方才有道理。

[师]你分析得很有道理,积的乘方如何运算呢?能不能找到一个运算法则?有前两节课的探究经验,老师想请同学们自己探索,发现其中的奥秒。

Ⅱ.导入新课

老师列出自学提纲,引导学生自主探究、讨论、尝试、归纳。

出示投影片

1.填空,看看运算过程用到哪些运算律,从运算结果看能发现什么规律?

(1)(ab)2=(ab)·(ab)=(a·a)·(b·b)=a()b()

(2)(ab)3=______=_______=a()b()

(3)(ab)n=______=______=a()b()(n是正整数)

2.把你发现的规律用文字语言表述,再用符号语言表达。

3.解决前面提到的正方体体积计算问题。

4.积的乘方的运算法则能否进行逆运算呢?请验证你的想法。

5.完成课本P170例3。

一键复制全文保存为WORD