数学建模论文范文免费(必备通用8篇

在学习和工作的日常里,大家都不可避免地要接触到论文吧,通过论文写作可以培养我们独立思考和创新的能力。你知道论文怎样写才规范吗?以下是可爱的小编给大家整理的8篇数学建模论文范文的相关文章,欢迎参考,希望对大家有所帮助。

有关数学建模的论文 篇1

关键词:高职高专;数学建模;主观因素

中图分类号:G712 文献标识码:B 文章编号:1002-7661(2013)32-011-01

《数学建模与实验》是有助于学生深刻理解所学数学理论及其作用的应用型学科,是培养学生创新能力、动手能力、计算机应用能力以及论文写作能力的综合性学科。全国数学建模竞赛开始于1992年,但是直到1997年国家教育部数学教学改革研讨会之后,数学建模与实验才作为一门课程在众多高校中开展。高职高专院校培养应用技术型人才的目标使得数学建模与实验课程的开展成为可能,但是起步晚而且缓慢。

影响高职高专院校数学建模课程教学成果的主观因素:

高职高专院校数学建模课程的开展主要涉及了三类人群,即学生、教师、校领导。学生作为教学主体,教师是教学环节中的引子,而校领导就成为课程开展的催化剂,是必不可少的。

一、学生的综合素质是数学建模课程教学的核心

1、学生文化素质

高职高专院校的学生不同于其他普通高等院校。通过调查分析发现[4],高职高专院校录取的学生文化基础都比较薄弱,知识接受能力比较低,更主要在于学生的主动][性差而且理论学习兴趣并不浓厚,因此导致高职高专学生整体的文化素质较低,使得教学任务的完成比较困难。

2、学生心理素质

相对低下的文化素质,使得在与其它普通高校学生进行交流时无疑增加了自卑心理;另外,高职高专院校的学生跟所有高校学生的共同心理问题就在于逆反心理严重,这使得在教学过程中学生的很少会采取积极主动的配合。

3、学生的认知素质

高职高专院校的学生接受的职业教育在进校伊始就对未来的工作开始进行规划,造成他们在课程选择方面多选取技术性、实践性的课程,而且多数学生认为理论教学没有实际意义,对于未来的职业不会有大的帮助。除此之外,数学建模是数学学科的分支,大多数学生认为数学建模也像他们过去所学的数学一样,是纯理论的教学,是定义、定理、公式推导的学习,这种误解极大了消磨了学习数学建模课程的兴趣。通过分析发现:参加数学建模选修课的学生中90%是来自于工科或管理专业,所学课程与数学建模相关度不高,而多数学生参加选修课也以获得学分为主要目标,因此学生心理上对于这门课程并非完全接受。

二、教师的专业技能水平和知识储备量是影响数学建模课程教学的关键

教师的专业技能水平:目前,高职高专院校对于专业教师的基本要求是“双师型”教师,要求教师具有将理论教学融入实践的能力。但作为基础课教师,实践机会有限,所谓的“双师型”要求就很难执行。事实上,数学建模课程的教学正式将数学理论应用于其他专业领域的实践教学。近年来高职高专院校中数学教师更多的将专业技能水平的提升放在高等数学课程的理论教学上,忽视了计算机、理论应用等实践能力的提升,因而高职院校数学建模课程的教师数量非常匮乏。

教师的知识储备量:数学建模课程涉及经济、工程、医学、生物等众多领域,但对于专业的数学教师而言,这些陌生领域的知识几乎是没有储备,因而在教学过程中教师只能就题讲题,无法做到抛砖引玉,而数学建模真正意义上的应用就无法实现。因此对于高校教师,应该加强各个领域上的知识储备量,真正做到将数学理论融汇于生活、生产的各个方面。

三、校领导班子的关注与支持是数学建模课程开展的必要条件

高职高专院校课程设置偏向于应用型、专业型课程体系,忽视了基础理论课的建设。我国高职高专院校数学建模课程起步较晚也是因为校领导班子对于这门课程的认识不够,没有体会到该课程对于学生能力培养带来的优势;除了校领导对于数学建模课程有所误解外,甚至多数专业课教师对数学建模课程的开展都存有疑虑,因此校领导班子的支持是改变校内所有教职工偏见的主要途径,只有教师正确认识和对待这门课程,才能使得学生对其产生兴趣,促进该课程的教学。

数学建模课程是培养学生创新能力、团队能力和计算机应用水平的学科,因此该门课程的开展是及其必要的。提高学生的综合素质,提升教师的专业技能水平以及加强校领导班子的关注程度是改善数学建模课程教学成果的主要途径。

参考文献

[1] 王 庆。吴长勇。高职高专院校开展数学建模课程的认识与实践[J].苏州市职业大学学报,2008.19(1):118-121.

[2] 黄进利。高职高专院校数学建模教育的现状及教学探索[J].高教视野。2010.17:20-21.

[3] 李守英。郭石磊。高职高专数学实验课程模式探索[J].怀化学院学报。2006.25(2):158-159.

[4] 吕良军。郝振莉。高职高专学生数学建模能力的调查与分析[J].职业教育研究。2006:16-17.

关于数学建模论文 篇2

一、我校学生数学建模现状

1.高职生的数学基础相当薄弱,学习习惯不好,然而数学知识理论性强,计算繁琐,并要求学生有足够的耐心和较强的理性思维能力,这就会让学生在学习数学相关知识时感觉有一定的难度。而另一方面,高职院校的课时量在尽量压缩,数学应用方面的内容只是蜻蜓点水,根本无法广泛而深入的涉及到位。例如,我校很多专业只开一个学期64课时的数学课,还有些专业甚至不开数学课,要建立一些比较高等的数学模型,高职学生的数学知识显然不够。

2.高职院校目前的教学方法多表现为填鸭式的教学法,过分强调严格的定理和抽象的逻辑思维,特别是运算技巧的训练讲得过于精细,考试形式单一。对于高职生来说,只要求他们会套用现成的公式及作一些简单的计算就行,但是目前的教学不能使学生发挥自己的主观能动性,也调动不了学生学习数学的兴趣。

3.目前我校只开设了一门数学方面的公共选修课《数学建模》,一共16次课,仅仅靠课堂上讲的内容让学生来参加数学建模竞赛远远不够,另外,学生又要同时兼顾其他专业课程,因此学习效果不好。

4.组织数学建模赛前培训的师资队伍理论薄弱,只靠一两个青年教师承担培训指导任务,缺乏参赛经验丰富的老教师。

5.我校学生参加数学建模的积极性不高,我校已经连续参加几年的数学建模竞赛,但最多的也就5个队,仍有多数学生称未听过有这项比赛,说明宣传不是很到位。

6.目前组队参赛的任务是交给基础部来完成,而基础部没有学生,这就会造成找队员困难的问题。

二、参加数学建模比赛的意义

1.有利于培养学生综合解决问题的能力

2.有利于促进高职数学课程的改革

大多数学校的高职数学课还是采用教师在上面讲,学生在下面听的方法,殊不知对于高职生而言,他们不但听不懂,而且也不愿意听,这就促进教师要改进教学方法,最好的方法是在机房里上课,老师把重要的理论思想教给学生之后,具体的计算方法可以让学生利用软件在电脑上操作,这样既提高了学生的学习兴趣,也提高了学生运用软件的能力。

三、数学建模课的发展建议

由于参加数学建模竞赛可以激起学生学习数学的兴趣,提高学生运用数学和计算机技术解决问题的综合能力,激励学生积极参加课外科技活动,开拓学生的知识视野,培养学生的创新意识和团队合作意识,推动高等数学教学体系,教学内容和教学方法的改革。基于此,给出一些建议如下:

1.把数学建模的管理层次上升到学院,因为只有学院的大力支持,领导的高度重视才是提高高职学生数学建模能力的首要条件,而且只有学院的倡导和支持,各部门在宣传数学建模方面时才会更加尽职尽责,不会出现推诿的现象。

2.成立数学建模协会小组,并有学校资金的支持,这样可以把对数学建模有兴趣的同学集中在一起,让他们之间相互讨论。建模协会应该有协会会长及其他管理者,这样他们在运营平时的协会工作时才能各司其职,并有一定的组织性和纪律性。协会平时可以组织一些经典的数学建模的小案例以海报的形式展现在全校学生面前,或者是以有奖竞猜的方法提高学生的参与性,这样不仅可以达到宣传数学建模的效果,也可以更好的提高学生的理性思维能力。

3.平时开设数学建模选修课,假期集中培训备战国赛,由于我校的数学建模课一般开设在大一的下学期,而技能大赛的比赛时间通常是选修课开课之前,这就导致了学生参加技能大赛时根本不知道数学建模比赛比的是什么。而且选修课只有一个老师教,力度太小。应该是大一开学就开始开设相关的数学建模选修课,几个数学老师分工,每个数学老师讲授一块内容,这样学生了解的知识面会更广一些。另外,必须赛前集中培训,因为平时的选修课只是让学生了解,但并没有让他们系统的练习,所以赛前培训就是重点讲数学建模习题,并让学生以三人一个小组模拟训练。

关于数学建模论文 篇3

【摘要】首先阐述数学建模内涵;其次分析数学建模与数学教学的关系;最后总结出提高数学教学效果的几点思考。

【关键词】数学建模;数学教学;教学模式

什么是数学建模,为什么要把数学建模的思想运用到数学课堂教学中去?经过反复阅读有关数学建模与数学教学的文章,仔细研修数十个高校的数学建模精品课程,数学建模优秀教学案例等,笔者对数学教学与数学建模进行初步探索,形成一定认识。

一、数学建模

数学建模即运用数学知识与数学思想,通过对实际问题数学化,建立数学模型,并运用计算机计算出结果,对实际问题给出合理解决方案、建议等。系统的谈数学建模需从以下三个方面谈起。

1.数学建模课程。

“数学建模”课程特色鲜明,以综合门类为基础,重实践,重应用。旨在使学生打好数学基础,增强应用数学意识,提高实践能力,建立数学模型解决实际问题。注重培养学生参与现代科研活动主动性与参与工程技术开发兴趣,注重培养学生创新思维及创新能力等相关素质。

2.数学建模竞赛。

1985年,美国工业与应用数学学会发起的一项大学生竞赛活动名为“数学建模竞赛”。旨在提高学生学习数学主动性,提高学生运用计算机技术与数学知识和数学思想解决实际问题综合能力。学生参与这项活动可以拓宽知识面,培养自己团队意识与创新精神。同时这项活动推动了数学教师与数学教学专家对数学体系、教学方式与教学知识重新认识。1992年,教育部高教司和中国工业与数学学会创办了“全国大学生数学建模竞赛”。截止20xx年10月已举办有21届。大力推进了我国高校数学教学改革进程。

3.数学建模与创新教育。

创新教育是现代教育思想的灵魂。数学建模竞赛是实现数学教育创新的重要载体。如20xx年A题,葡萄酒的评价中,要求学生对葡萄酒原料与酿造、储存于葡萄酒色泽、口味等有全面认识;而20xx年D题,机器人行走避障问题,要求学生了解对机器人行走特点;20xx年B题,乘公交看奥运,要求学生了解公交换乘系统。大学生数学建模竞赛试题涉及不是单一数学知识。因此数学教师在数学教学中必须融合其它学科知识。同时学生参与数学建模竞赛有助于增强其积极思考应用数学知识创造性解决实际问题的意识。

二、数学建模与数学教学的关系

数学建模是数学应用与实践的重要载体;数学教学旨在传授数学知识与数学思想,激发学生应用数学解决实际问题的意识。数学建模与数学教学相辅相成,数学建模思想与数学教学将有助于提高教学效果,反之传统应试扼杀了学生学习数学的兴趣与主观能动性;数学教学效果,在数学建模过程中体现显著。

三、数学教学

1.数学教学“教”什么。电子科技大学的黄廷祝老师说:“数学教学,最重要的就是数学的精神、思想和方法,而数学知识是第二位的。”因此数学教师不仅要传授数学知识,更要让学生知道数学的来龙去脉,领会数学精神实质。

2.如何提高数学教学效果。提高数学教师自身素质是关键,创新数学教学模式是手段,革新评价机制是保障。

①提高数学教师自身素质。

数学教师自身素质是提高数学教学效果的关键。20xx年胡书记在《xxx关于加强教师队伍建设的意见》中明确提出,我国教育出了问题,问题关键在教师队伍。数学学科特点鲜明。若数学教师数学素养与综合能力不强,则提高数学教学效果将无从谈起。因此数学教师需通过如参加培训、学习精品课程、同行评教、与专家探讨等途径努力提高自身素养。

②创新数学教学模式。

数学建模论文范文免费 篇4

试论数学建模

【摘 要】本文以“减肥问题的研究”为例,介绍了数学建模基本方法和步骤,希望它能对初次参加数学建模的同学有所帮助。

【关键词】数学建模;基本方法;步骤

数学建模就是应用建立数学模型来解决各种实际问题的方法,也就是通过对实际问题作抽象、简化、确定变量和参数并应用某些“规律”建立含变量和参数的数学问题,求解该数学问题并验证所得到的解,从而确定能否用于解决实际问题的这种多次循环,不断深化的过程。数学建模可以培养学生下列能力:(1)洞察能力,许多提出的问题往往不是数学化的,这就是需要建模者善于从实际工作提供的原形中;抓住其数学本质,同时有些数学模型又可以有许多现实意义,这使得建模者不得不具有很强的洞察以及多种思维方式进行横向、纵向的研究;(2)数学语言翻译能力即把经过一定抽象和简化的实际用数学的语言表达出来,形成数学模型,并对数学的方法和理论推导或计算得到的结果,能用大众的语言表达出来,在此基础上提出解决某一问题的方案或建议;(3)综合应用分析能力,用已学到的数学思想和方法进行综合应用分析,并能学习一些新的知识;(4)联想能力,对于不少的实际问题,看起来完全不同,但在一定的简化层次下它们的数学建模是相同的或相似的,这正是数学应用广泛性的体现,这就要培养学生有广泛的兴趣,多思考,勤奋踏实地学习,通过熟能生巧达到触类旁通地境界。因此,目前有越来越多的高等院校自己组织或参加全国乃至国际大学生数学建模竟赛。然而,有部分学生特别是初次参加数学建模的学生对数学建模感到很茫然,本人多次承担数学建模指导老师,撰写该论文,希望对初次参加数学建模的同学有所帮助。

1.建立数学模型的一般步骤

使问题理想化

在众多因素中孤立出所研究的问题是科学研究的经典方法。按照辩证唯物主义观点,世界上一切事物都是相互依赖、相互依存的,要精细地研究一个问题常常无从下手,就是因为思考相关问题太多所致。因此,对初学者最好的方法就是使问题简单化、理想化,在特殊或极端情况下进入课题,然后加入相关因素,修正结果,使问题深化。这一步的核心思想就是在复杂的现实中孤立我们所关心的事物与什么有直接因果关系,把这些孤立出来的事物用符号、算式及相关学科的理论进行数学分析处理的全过程,就可以认为是数学建模的过程了。

假定及符号认定

在比较理想的情况下建立数学模型还是很容易的。所谓理想就是通过假设条件把所研究的问题进一步明确,哪些条件先不虑,哪些条件应设为变量,哪些变量与时间(路程、费用等等)有关。这样就为下一步建立数学模型打下了良好的基础。

数据处理与模型建立

数学模型的建立一般有两种情况。其一,问题本身给出一些数据,建模的人应从数据上找出一定的规律性,这时就应通过相应的数学方法整理数学数据。如使用最小二乘法、统计学方法等。对于没有数据的数学模型的建立,一般要使用数学手段建立形式,如矩阵、微分方程、数学优化形式等等,这些都可以视为数学模型的初创时期。在建模初期还必须注意使用其它学科的成果,如物理学、化学、生物学、电工、机械、光学等学科,把这些学科的现成结论直接拿来使用也是数学建模时必不可少的一环。

分析结果及修改模型

在比较理想的状态下建立的数学模型一般都与实际原形有较大差距。为使数学模型更能反映原形,就必须按实际情况再修改、补充新条件,分析新结论,最终经反复研究会得到一个令人满意的结果。

2.以对“减肥问题的研究”为例,探讨数学建模方法和步骤

问题的提出

对于人类来说,肥胖症或减肥问题越来越引起人们的广泛关注。目前各种减肥食品或药物数不胜数,各种减肥新法也纷纷登场,如国氏全营养素、减肥酥、soft海藻减肥香皂等。一时间,爱美的人,害怕肥胖的人面对如此多的食品、药物或疗法简直无所适从。这里不准备也不可能去论证各种食品、药物或疗法的机理和有效性,只从数学上对减肥问题作些讨论,即科学减肥的数学。

合理假设

A1:不妨假设人体由脂肪构成。(相对而言,成人是由骨骼、水分、脂肪组成,短时间内人体的骨骼、内脏等变化不大,可视为常数。)

A2:设时刻t,人的体重为W(t)千克,显然W(t)可假设为t的连续函数;

A3:假设单位时间内人食用食物产生的热量为A大卡,同样也假设A为常数;

A4:单位时间内维持新陈代谢的热量为B大卡,同样也假设为常数;

A5:设单位时间内因运动消耗的能量与体重成正比,即CW(t)大卡(由于运动需要消耗能量,而且体重越大,能量越多);

A6:对于人体系统而言,能量守恒;

A7:过剩的热量按1千克脂肪=D大卡热量转化为脂肪(D=*10焦耳/千克,称为脂肪的能量转换系数);

A8:初始时刻t=0时,体重为W0千克。

注:1千克脂肪完全“然烧”相当于释放10000(即1D)大卡热量。

模型的建立

由能量(热量)守恒原理即任何时间段内由于体重的改变所引起的人体内能量的变化应该等于这段时间的摄入的能量与消耗的能量之差。故在△t(或[t,t+△t]时间间隔内,“增加”的热量=△t[单位时间内吸入热量-单位时间内消耗的热量],于是有:

3.总结

(1)一般方法只供参考,各步有机联系但侧重点不同。

(2)模型虽粗,但能定性说明问题,每步还有改进的余地。

参考文献:

[1]数学建模[M].高等教育出版社。

[2]刘平。谈数学学习[J].数学通讯,20xx(10).

关于数学建模论文 篇5

Ⅰ、问题的重述

石油是重要的战略资源,进入新世纪以来石油价格一路高涨且波动频繁,油价成为全球关注的焦点。成品油的合理定价对国家经济发展及社会和谐稳定具有重要的意义,还关系到民生,石油储备等多方面的问题。石油价格的变化深深影响着经济和社会的发展,由于石油的特殊战略地位,油价的波动已经成为各国政府、学者以及业界关注的焦点,每次油价上涨更是吸引了各方广泛的关注。

统计数据表明,自2009年以来,国内成品油价格共调整17次,其中12次上调,5次下调。以北京为例,93号汽油的零售价也从元/升上涨至目前的

元/升,涨幅约为56%。油价的上涨引起了广大消费者的不满,每到成品油调价窗口期,油价话题总会引发热议;与此同时,现行的成品油定价机制也遭到了广泛质疑,定价机制改革的呼声也日益高涨。成品油价格究竟多少合适,随之成为一个敏感而又复杂的问题。当前我国成品油定价体制是否依然合理?现在的问题就是如何综合考虑各种影响成品油价格的因素如原油价格等提出一个合理的成品油定价机制。

试根据中国国情,收集相关数据,综合考虑各种因素,并通过数学建模的方法,就成品油定价机制进行定性分析与定量计算,得出明确、有说服力的结论。最后,根据建模分析计算的结果,给国家发改委写一份报告,提出自己的新成品油价格机制,并说明新机制的优越性。

Ⅱ、问题的分析及思路

、问题分析

石油价格过高会影响国民经济的积极性,影响社会稳定,过低又会影响企业的正常运转等,还需要考虑到与国际油价接轨以及我国特殊的国情,以及我国现行的石油价格机制所存在的不合理问题。

现行成品油价格机制是否合理,需要一个量化指标来判定,然而影响成品油定价机制的指标的相关关系和所反应结果的准确度都是模糊不清的。应此我们需要基于FCE模糊综合评判算法建立一个评价模型,还需要基于AHP层次分析法得到在各级别指标的权重向量。同时确立了成品油定价机制合理程度的等级域,并且将等级数值化。而后,利用正态分布函数,建立了关于等级制度的隶属度函数,

并且基于该函数得到了评价指标与等级的模糊关系矩阵。之后将各层评价指标的权重与模糊关系矩阵进行模糊算子处理得到综合评价矩阵,最终得到成品油定价机制合理程度的量化评估。

在评价了现行的机制不合理之后,需要提出更合理的机制。因此我们需要建立一个基于原油成本法的新成品油价格估算方法得模型。由于缺乏相关数据,我们需要使用前人的经验权重系数,用新的估算方法得到了成品油基准价格。由于经验权重系数准确性有待商榷,因此需要再考虑其他影响因素在基准成品油价格上进行调整得到最终成品油价格估算机制。

、问题思路:

用下面的流程图表示我们的建模思路

建立评价现有石油价格体制的模糊综合评价模型

Ⅲ、问题的假设

一、只考虑对成品油价影响较大的五个因素,即:原油价格、企业成本、供

求关系、承受能力、社会公平。对于每一个因素,如果其受其他因素的影响,则对该因素单独进行分析。本模型我们假设只有社会公平受地域分布、收入水平、当地物价影响。

二、假设影响成品油定价的五个因素之间没有影响,各自独立,且影响社会

公平的三个因素也是独立的,不会对其他因素造成影响。

三、假设石油资源稀缺程度和环境因素及能源效率不影响成品油定价,或者

说其影响的力度较小,忽略掉其影响。

Ⅳ、符号说明

Ⅴ、模型的建立及求解

模型一:

基于模糊综合评价模型(FCE)的我国现行成品油定价机制评价及验证模型

模糊综合评价算法概述

模糊综合评价是以模糊数学为基础,应用模糊关系合成的原理,将一些边界不清,不易定量的因素定量化,进行综合评价的一种方法,其特点是评价结果不是绝对地肯定或否定,而是以一个模糊集合来表示。隶属度与隶属度矩阵是模糊综合评价的关键性概念。对于论域(即研究范围)U中任意元素x,都有A(x)∈

[0,1]与之相对应,则称A为U上的模糊集,而A(x)即称为x对A(A通常称之为评价集)的隶属度。隶属度A(x)越接近于1,表示x属于A的程度越高,A(x)越接近于0表示x属于A的程度越低。隶属度矩阵则为多个元素xi对于Ai的模糊关系矩阵,矩阵元素r即为x对于A的隶属度。模糊综合评级中通常分有目ijij

标层和指标层,通过指标层与评价集之间的模糊关系矩阵(即隶属度矩阵)可以得到对于目标层对于评价集的隶属度向量,从而得到目标层的综合评价结果。

模糊综合评价模型求解

基于我国现行成品油定价机制的模型分析

我国现行成品油定价机制的提出设计多方面因素,可以采用原油价格、企业成本、供求关系、承受能力、社会公平这五个指标来进行衡量。将这五个指标定为一级指标。而这五个指标无法定量的给出对我国现行成品油定价机制衡量的实际标准,而且它们之间的相关关系和所反应结果的准确度都是模糊不清的。在社

会公平这一指标下,又有地域分布、收入水平、当地物价这三个二级指标。它们对于成品油定价的定义,评价能力和它们之间的相互关系也是模糊不清的。综上所述,面对我国现行成品油定价机制的问题采用模糊综合评价方法来衡量是较为恰当的。

为此需要建立一个影响力评价等级集合V={V}来对成品油价格标准进行等i

级评价,并且构造出单指标因素对于各评价等级的隶属函数F(x),建立模糊关系矩阵R,同时需进行相应的基本操作,对各指标进行权重衡量,结合隶属度矩阵求出综合评价矩阵。

在计算各级指标权重方面,考虑到了传统的模糊综合评价中的权重通常由专家指定或者根据调查结果判定,这样导致主观因素太大,权重定量不够精确。为避免这些不利因素,在这个模型中采用层次分析法求出各指标权重大小。

模型假设

1)忽略竞争程度、资源稀缺以及能源效率和环保节能等因素对于模型的影响。

2)假设企业成本、企业成本、供求关系、承受能力、社会公平等因素在原油价格波动时一个原油价格的上涨或者下降过程中这段时间内保持不变。

3)假设现行成品油定价机制得到了良好的实施,国内成品油价格基本上与机制定义的价格相符。

指标的层次划分

U??u1,u2,u3,u4,u5?

建立具有准则层和子准则层这两层的模糊综合评价分析模型。

指标层次表(表1)

数学建模论文范文篇二:数学建模优秀论文模板(经典中的经典)

承诺书

我们仔细阅读了中国大学生数学建模竞赛的竞赛规则。

有关数学建模的论文 篇6

关键词:数学建模思想;方法;趋势

数学建模思想,是要培养学生灵活运用数学知识解决实际中的问题的能力。在这一过程中,我们需要培养学生的抽象思维、简化思维、批判性思维等数学能力。数学建模关键是提炼数学模型,是运用科学抽象法,把复杂的研究对象转化为数学问题,经合理简化后,建立起揭示研究对象定量的规律性的数学关系式(或方程式)。

一、数学无处不在

数学是研究现实世界中的数量关系和空间形式的科学。随着知识经济时代的来临,数学的内涵已经大大拓展了,人们对现实世界中数量关系和空间形式的认识和理解也已今非昔比、大大深化和发展了。长期以来,在人们认识世界和改造世界的过程中,对数学的重要性及其作用逐渐形成了自己的认识和看法,而且这种认识和看法随着时代的进步也在不断发展。数学与我们的生活息息相关,数学无处不在。创立于于一九五八年的中华老字号鼎泰丰,因为制作的小笼包享誉中外。但大多数人也许不知道,鼎泰丰的小笼包不但有着极高的品质要求,还有着标准化的数字背景,据报道鼎泰丰自行研发的蒸包机完全由电脑控制,每一笼里的蒸汽都是均匀稳定充足的。不论是高科技含量极高的航天飞行器的设计,还是已经走入我们生活当中的指纹识别系统;无论是探索海洋秘密的海洋遥测数据处理,还是融入各行各业、千家万户的网络系统,无不闪现着数学的光辉。

二、数学建模的重要性

随着计算机技术的迅速发展,数学的应用不仅在工程技术、自然科学等领域发挥着越来越重要的作用,而且以空前的广度和深度向经济、金融、生物、医学、环境、地质、人口、交通等新的领域渗透,数学技术已经成为当代高新技术的重要组成部分。随着对数学应用能力要求的提高,数学建模将在数学教学中越来越受到人们的重视。相对于传统的教学,数学建模更贴近实际生活,有较强的趣味性、灵活性,更能激发大家学习兴趣。数学建模的重要性体现在,学生的想象力、洞察力和创造力得到锻炼和培养,计算机的编程能力得到锻炼和培养,学生的自主学习能力得到锻炼和提高,学生的文字与语言表达能力得到锻炼和提升。数学建模在技工学校的应用,将使有大量经过良好数学训练的毕业生走进各行各业,这是社会的需要,对数学的发展特别是应用数学的发展也必然起到积极的推动作用

三、技工学校培养数学建模思想与方法

1、为了培养学生的建模意识,数学教师需要提高自己的建模思想

数学建模的开展必然需要我们在教学内容和要求方面做出调整,因此,技工学校的教师要首先在思想意识和教学观念上有所转变,顺应形势,在以素质教育为目标的前提下,积极配合学校进行教改。数学建模思想可以与数学基础知识的教学相互依托,彼此渗透,逐渐升华。锻炼学生的动手能力,在涉及有关折叠、拼剪问题时就可以让学生折一折、摆一摆、拼一拼、画一画,费时不多,构造了各种模型,活动富于情趣,形象生动,不失为数学建模的起步活动和激发数学建模情趣的重要方式。数学教材只是为我们构筑了学习的框架,为了丰富教学内容,需要不断地搜集与教材相关的数学知识内容,只有我们深入钻研教材,挖掘教材所蕴涵的应用数学的材料,并从中总结提炼,这些都将是数学建模教学的素材。

2、数学建模的开展使学生对数学知识的理解有显著的提高

我国现有的数学教学模式过于学科化,视课程的科学性和系统性为主导,学生被动接受知识信息。数学建模为学生提供更多的数学知识的实际背景材料,使学生形成对数学的本质的认识,增强了学生创新能力的培养。数学建模的开展使学生达到深化、理解知识,发展数学思维能力,激发学习兴趣,强化应用意识的目的,促进数学素质的提高。培养学生观察生活的能力,在实际生活中进行搜集素材,使自身的视野更加开阔,知识水平在不断地提高,积累的经验更加丰富,使学生的学习能力得到锻炼,改变以往的被动学习状态,逐步学会主动学习。为使数学建模更贴近生活,教师应将具有时代气息的相关报道引入数学课堂,这种时代气息浓郁、真实感强烈的素材,必将调动学生学习的积极性,数学教学建模思想将得到更好的贯彻。

3、加强师资力量的岗位培训,重视数学建模教学的过程和方法

技工学校的学生文化程度普遍不高,对抽象的数学问题惧怕、厌烦,在思想上抵制数学的学习。教师应加强自身的业务学习,将建模思想深入到实际的教学当中。根据技工学校的学习现状,制定适合教学的建模课件,通过学生的讨论、探究,使学生把错综复杂的实际问题简化、抽象为合理的数学模型。培养学生主动探索、团结协作的精神,提高他们分析问题和解决问题的能力,增强他们的数学素质和创新能力,并在这个过程中享受学习数学、应用数学的乐趣。数学建模教学本身是一个不断探索、不断完善、不断提高和不断创新的过程。因此,要做到先简后难,重在参与,培养兴趣。教师课前设计的问题应具有:广泛性、趣味性、时代性和创新性。为进一步优化模型,应注重一题多模,鼓励学生多思考、多讨论、多比较,力求建立最优的数学模型,培养学生的创新精神和创新能力。

结语:新技术革命条件下科学技术在生产力形成和发展过程中起到了决定作用,科学技术是第一生产力。随着社会经济的迅猛发展,各个行业对技工的需求越来超大,技工学校教改是大势所趋。培养学生的创新思维,使学生在学习过程中构建数学建模意识,充分发挥主观能动性,变被动学习为主动学习,增强学生分析和解决问题的能力,也只有这样才能真正提高学生的创新能力,使学生学到有用的数学,在今后的学习与工作中学以致用。

参考文献

[1] 李庆霞。 在数学教学中注重培养学生的应用意识[A]. 2009无锡职教教师论坛论文集[C],2009年。

[2] 朱春浩。 数学建模的教学构想与实践[J]. 辽宁教育学院学报,2002年04期。

[3] 熊志平。 论数学建模的教学理念――关于知识、能力、素质的综合培养[J]. 考试周刊,2011年25期

[4] 裴丽群。 在数学教学中揭示数学的本质[A]. 低碳经济与科学发展――吉林省第六届科学技术学术年会论文集[C],2010年。

关于数学建模论文 篇7

20XX年,是我矿实现原煤生产大跨越的一年,是全矿干群诚信服从求进取,忠诚敬业创佳绩的一年,一年来,矿思想政治工作研究会充分发挥思想政治工作优势,大力开展形式多样的思想政治工作研究活动,把思想政治工作溶入到了企业的安全生产、经营管理等各项工作之中,为我矿健康持续稳定发展提供了强大的发展动力,10月份矿党委政研会结合我矿新时期工作的特点,精心选编了二十个思想政治工作调研课题,在全矿干部中开展征集活动,截止11月30日共收到调研论文94篇,经过政研会认真评选,评出优秀论文30篇。为表彰先进,激励后进,不断开创政研工作新局面,矿党委决定对范书友等30名获得优秀论文的同志进行公开表彰,名单如下:

一等奖5人:范书友、史宗智、李治民、刘步一、李现志

二等奖10人:刘会钊、梅红仁、周振乾、陈焕琴、刘建国

马金才、马志军、王峰、魏新刚、韦大鹏

三等奖15人:杨西勋、赵春兰、xxx旦、王世民范心顺

裴建子、严献仓、张毅、上官建民、贾年松

范秀英、郅玲玲、江茂东、范三流、刘建停

为切实推进我矿政治研究工作再上新台阶,矿党委希望受到表彰的同志要珍惜荣誉,戒骄戒躁,真心实意,真抓实干,按照我矿政研会要求,认真做好明年的思想政治工作,把取得的成绩当作新的起点,把获取荣誉当作前进的动力,扎扎实实地做好各项工作。矿党委号召,基层支部、机关各科室,要以先进为榜样,紧紧围绕2016年xxx以严治矿,科学决策,综合管理,全面提高xxx的工作思路,为实现全年原煤生产110万吨,奋斗目标130万吨,创水平目标140万吨的整体工作布置,在全矿兴起xxx赶先进,创佳绩xxx的热潮,为我矿物质文明、精神文明和政治文明健康协调发展做出新的更大的贡献。

有关数学建模的论文 篇8

【摘要】当代西方经济认为,经济学的基本方法是分析经济变量之间的函数关系,建立经济模型,从中引申出经济原则和理论进行决策和预测。

【关键词】经济学数学模型应用

在经济决策科学化、定量化呼声日渐高涨的今天,数学经济建模更是无处不在。如生产厂家可根据客户提出的产品数量、质量、交货期、交货方式、交货地点等要求,根据快速报价系统(根据厂家各种资源、产品工艺流程、生产成本及客户需求等数据进行数学经济建模)与客户进行商业谈判。

一、数学经济模型及其重要性

数学经济模型可以按变量的性质分成两类,即概率型和确定型。概率型的模型处理具有随机性情况的模型,确定型的模型则能基于一定的假设和法则,精确地对一种特定情况的结果做出判断。由于数学分支很多,加之相互交叉渗透,又派生出许多分支,所以一个给定的经济问题有时能用一种以上的数学方法去对它进行描述和解释。具体建立什么类型的模型,既要视问题而定,又要因人而异。要看自己比较熟悉精通哪门学科,充分发挥自己的特长。

数学并不能直接处理经济领域的客观情况。为了能用数学解决经济领域中的问题,就必须建立数学模型。数学建模是为了解决经济领域中的问题而作的一个抽象的、简化的结构的数学刻划。或者说,数学经济建模就是为了经济目的,用字母、数字及其他数学符号建立起来的等式或不等式以及图表、图象、框图等描述客观事物的特征及其内在联系的数学结构的刻划。而现代世界发展史证实其经济发展速度与数学经济建模的密切关系。数学经济建模促进经济学的发展;带来了现实的生产效率。在经济决策科学化、定量化呼声日渐高涨的今天,数学经济建模更是无处不在。如生产厂家可根据客户提出的产品数量、质量、交货期、交货方式、交货地点等要求,根据快速报价系统与客户进行商业谈判。

二、构建经济数学模型的一般步骤

1.了解熟悉实际问题,以及与问题有关的背景知识。2.通过假设把所要研究的实际问题简化、抽象,明确模型中诸多的影响因素,用数量和参数来表示这些因素。运用数学知识和技巧来描述问题中变量参数之问的关系。一般情况下用数学表达式来表示,构架出一个初步的数学模型。然后,再通过不断地调整假设使建立的模型尽可能地接近实际,从而得到比较满意的结论。3.使用已知数据,观测数据或者实际问题的有关背景知识对所建模型中的参数给出估计值。4.运行所得到的模型。把模型的结果与实际观测进行分析比较。如果模型结果与实际情况基本一致,表明模型是符合实际问题的。我们可以将它用于对实际问题进一步的分析或者预测;如果模型的结果与实际观测不一致,不能将所得的模型应用于所研究的实际问题。此时需要回头检查模型的组建是否有问题。问题的假使是否恰当,是否忽略了不应该忽略的因素或者还保留着不应该保留的因素。并对模型进行必要的调整修正。重复前面的建模过程,直到建立出一个经检验符合实际问题的模型为止。一个较好的数学模型是从实际中得来,又能够应用到实际问题中去的。

三、应用实例

商品提价问题的数学模型:

1.问题

商场经营者即要考虑商品的销售额、销售量。同时也要考虑如何在短期内获得最大利润。这个问题与商场经营的商品的定价有直接关系。定价低、销售量大、但利润小;定价高、利润大但销售量减少。下面研究在销售总收入有限制的情况下。商品的最高定价问题。

2.实例分析

某商场销售某种商品单价25元。每年可销售3万件。设该商品每件提价1元。销售量减少0.1万件。要使总销售收入不少于75万元。求该商品的最高提价。

解:设最高提价为X元。提价后的商品单价为(25+x)元

提价后的销售量为(30000-1000X/1)件

则(25+x)(30000-1000X/1)≥750000

(25+x)(30-x)≥750[摘要]本文从数学与经济学的关系出发,介绍了数学经济模型及其重要性,讨论了经济数学模型建立的一般步骤,分析了数学在经济学中应用的局限性,这对在研充经济学时有很好的借鉴作用。即提价最高不能超过5元。

四、数学在经济学中应用的局限性

经济学不是数学,重要的是经济思想。数学只是一种分析工具数学作为工具和方法必须在经济理论的合理框架中才能真正发挥其应有作用,而不能将之替代经济学,在经济思想和理论的研究过程中,如果本末倒置,过度地依靠数学,不加限制地“数学化很可能经济学的本质,以至损害经济思想,甚至会导致我们走入幻想,误入歧途。因为:

1.经济学不是数学概念和模型的简单汇集。不是去开拓数学前沿而是借助它来分析、解析经济现象,数学只是一种应用工具。经济学作为社会科学的分支学科,它是人类活动中有关经济现象和经济行为的理论。而人类活动受道德的、历史的、社会的、文化的、制度诸因素的影响,不可能像自然界一样是完全可以通过数学公式推导出来。把经济学变为系列抽象假定、复杂公式的科学。实际上忽视了经济学作为一门社会科学的特性,失去经济学作为社会科学的人文性和真正的科学性。

2.经济理论的发展要从自身独有的研究视角出发,去研究、分析现实经济活动内在的本质和规律。经济学中运用的任何数学方法,离不开一定的假设条件,它不是无条件地适用于任何场所,而是有条件适用于特定的领域在实际生活中社会的历史的心理的等非制度因素很可能被忽视而漏掉。这将会导致理论指导现实的失败。

3.数学计量分析方法只是执行经济理论方法的工具之一,而不是惟一的工具。经济学过分对数学的依赖会导致经济研究的资源误置和经济研究向度的单一化,从而不利于经济学的发展。

4.数学经济建模应用非常广泛,为决策者提供参考依据并对许多部门的具体工作进行指导,如节省开支,降低成本,提高利润等。尤其是对未来可以预测和估计,对促进科学技术和经济的蓬勃发展起了很大的推动作用。但目前尚没有一个具有普遍意义的建模方法和技巧。这既是我们今后应该努力发展的方向,又是我们不可推卸的责任。因此,我们要以自己的辛勤劳动,多实践、多体会,使数学经济建模为我国经济腾飞作出应有的贡献。

一键复制全文保存为WORD